地下铁道结构长效服役

赵磊等:翘曲变形下CRTSⅢ型板式无砟轨道层间动态接触关系

3
转自微信公众号:High speed Railway

High-speed Railway 论文推荐|翘曲变形下CRTSⅢ型板式无砟轨道层间动态接触关系


中文题目:

翘曲变形下CRTSⅢ型板式无砟轨道层间动态接触关系

英文题目:

Study on the dynamic contact relationship between layers under temperature gradients in CRTSⅢ ballastless track

论文二维码:

图片
论文链接:

https://www.sciencedirect.com/science/article/pii/S2949867824000540

作者简介:

图片

赵磊,中国铁道科学研究院集团有限公司铁道建筑研究所

赵国堂,中国国家铁路集团有限公司

杨国涛,中国国家铁路集团有限公司

金浩,东南大学交通学院

李晨曦,北京交通大学交通运输学院

引用格式

L.zhao, G.T.Zhao, G.T.Yang,et al., Study on the dynamic contact relationship between layers under temperature gradients in CRTSⅢ ballastless track, High-speed Railway,2024,2(1):133-142

中文摘要及创新点



中文摘要:

大温差地区CRTSⅢ型板式无砟轨道因白天受日照等影响轨道板内温度分布极不均匀,导致轨道板翘曲变形,诱发轨面不平顺,增加高速列车轮轨冲击响应,加速轨道结构损伤,有必要对高速行车过程中复合板与底座层间动态接触关系进行研究。结果表明:1)温度梯度影响下,复合板呈椭球形变形趋势,正温度梯度时板中部向上鼓起,四角支承,负温度梯度时板四角翘起,板中支承。2)温度梯度会导致复合板与底座间产生不同程度离缝,板下接触面积减小,高速行车时层间接触面积逐渐增加,但离缝不会完全闭合。3)温度梯度对轨道结构垂向振动加速度影响较小,对垂向位移的影响较大,温度梯度越大,轨道垂向位移越大,正温度梯度增加板中处垂向位移逐渐增加,负温度梯度增加板端处垂向位移增加。4)正温度梯度下侧边位置处自密实混凝土受力显著增加,正温度梯度由0增加至90·m-1自密实混凝土竖向应力增加了2.7倍。


图片

图1 无砟轨道周期性不平顺模型

图片

图2 转向架位于板上不同位置时层间压力峰值

图片

图3 板下接触面积时程曲线

图片

图4 板下最大离缝量对比

图片

图5 轨道板垂向位移对比

图片

图6 自密实混凝土竖向应力时程对比

图片

图7 钢轨振动加速度时程对比

图片

图8 轨道板振动加速度时程对比

图片

图9 转向架位于板上不同位置处层间压力分布图

创新点:

  1. 通过研究温度梯度下无砟轨道多层体系层间关系发现,和传统认知中无砟轨道层间均匀接触不同,实际服役过程中无砟轨道层间是以时变、非均匀接触的方式传递荷载和振动的。

  2. 温度梯度的存在极大程度削弱了层间接触面积,尤其是频繁行车的白天正温度梯度下,层间以四角支撑为主,大温度梯度下行车过程中钢轨正下方甚至无法完全闭合,接触区域集中于板侧边。

  3. 通过所建立的考虑层间状态精细化车辆-轨道有限元分析模型,反演了不同温度梯度下高速行车过程中层间接触关系的时变规律,揭示了非均匀接触影响下无砟轨道多层体系振动传递、结构变形与受力规律。

  4. 理论分析结果表明,层间非均匀接触关系对轨道结构振动加速度影响较小,对结构位移和受力影响较大,正温度梯度由0增加至90/m自密实混凝土边角处竖向动应力增加了2.7倍,解释了无砟轨道结构边角伤损的原因。


研究成果视频




视频1 负温度梯度

视频2 正温度梯度

英文摘要

In areas with large temperature differences, the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation, leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage. Therefore, it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running. The results of the study show that: 1) Under the influence of temperature gradients, the composite slab tends to deform elliptically. With a positive temperature gradient, the middle part of the track slab bulges upward, causing the slab to be supported by its four corners. Conversely, with a negative temperature gradient, the four corners of the track slab bulge upward, resulting in the slab being supported by its center. 2) Temperature gradients can lead to separation between the composite slab and the base plate, reducing the contact area between layers. During vehicle running, the contact area between layers gradually increases, but the separation cannot be completely closed. 3) The temperature gradient significantly affects the vertical displacement of the track. The vertical displacement in the middle of the slab increases with a positive temperature gradient. In contrast, the vertical displacement at the ends of the slab increases with a negative temperature gradient. 4) The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient, with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90 ℃/m.